On the Distribution of the Number of Roots of Polynomials and Explicit Logspace Extractors
نویسندگان
چکیده
Weak designs were defined in [10] and are used in constructions of extractors. Roughly speaking, a weak design is a collection of subsets satisfying some near-disjointness properties. Constructions of weak designs with certain parameters are given in [10]. These constructions are explicit in the sense that they require time and space polynomial in the number of subsets. However, the constructions require time and space polynomial in the number of subsets even when needed to output only one specific subset out of the collection. Hence, the constructions are not explicit in a stronger sense. In this work we provide constructions of weak designs (with parameters similar to the ones of [10]) that can be carried out in space logarithmic in the number of subsets. Moreover, our constructions are explicit even in a stronger sense; given an index to a subset, we output the specified subset in time and space polynomial in the size of the index. Using our constructions, we obtain extractors similar to the RRV extractors in terms of parameters and that can be evaluated in logarithmic space. Our main construction is algebraic. In order to prove the properties of weak designs we prove some combinatorial-algebraic lemmas that may be interesting in their own right. These lemmas regard the number of roots of polynomials over finite fields. In particular, we prove that the number of polynomials (over any finite field) with k roots, vanishes exponentially in k. In other words, we prove that the number of roots of a random polynomial is not only bounded by its degree (a well known fact), but furthermore, it is concentrated exponentially around its expectation (which is 1).
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملOn the distribution of the number of roots of polynomials and explicit weak designs
Weak designs were defined in R. Raz, O. Reingold, and S. Vadhan [Extracting all the randomness and reducing the error in Trevisan’s extractors, Proc 31st ACM Symp Theory of Computing, Atlanta, GA, May 1999, to appear in J Comput System Sci Special Issue on STOC 99] and are used there in constructions of extractors. Roughly speaking, a weak design is a collection of subsets satisfying some near-...
متن کاملOn the domination polynomials of non P4-free graphs
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
متن کاملOptimal Shape Design for a Cooling Pin Fin Connection Profil
A shape optimization problem of cooling fins for computer parts and integrated circuits is modeled and solved in this paper. The main purpose is to determine the shape of a two-dimensional pin fin, which leads to the maximum amount of removed heat. To do this, the shape optimization problem is defined as maximizing the norm of the Nusselt number distribution at the boundary of the pin fin's con...
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 7 شماره
صفحات -
تاریخ انتشار 2000